Additive partial linear models with measurement errors
نویسندگان
چکیده
منابع مشابه
Partial linear single index models with distortion measurement errors
We study partial linear single index models when the response and the covariates in the parametric part are measured with errors and distorted by unknown functions of commonly observable confounding variables, and propose a semiparametric covariate-adjusted estimation procedure. We apply the minimum average variance estimation method to estimate the parameters of interest. This is different fro...
متن کاملModel Checking in Partial Linear Regression Models with Berkson Measurement Errors
This paper discusses the problem of fitting a parametric model to the nonparametric component in partially linear regression models when covariates in parametric and nonparametric parts are subject to Berkson measurement errors. The proposed test is based on the supremum of a martingale transform of a certain partial sum process of calibrated residuals. Asymptotic null distribution of this tran...
متن کاملVariable Selection for Partially Linear Models with Measurement Errors.
This article focuses on variable selection for partially linear models when the covariates are measured with additive errors. We propose two classes of variable selection procedures, penalized least squares and penalized quantile regression, using the nonconvex penalized principle. The first procedure corrects the bias in the loss function caused by the measurement error by applying the so-call...
متن کاملSemiparametric analysis of linear transformation models with covariate measurement errors.
We take a semiparametric approach in fitting a linear transformation model to a right censored data when predictive variables are subject to measurement errors. We construct consistent estimating equations when repeated measurements of a surrogate of the unobserved true predictor are available. The proposed approach applies under minimal assumptions on the distributions of the true covariate or...
متن کاملSpatial Linear Mixed Models with Covariate Measurement Errors.
Spatial data with covariate measurement errors have been commonly observed in public health studies. Existing work mainly concentrates on parameter estimation using Gibbs sampling, and no work has been conducted to understand and quantify the theoretical impact of ignoring measurement error on spatial data analysis in the form of the asymptotic biases in regression coefficients and variance com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2008
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/asn024